Roll No	Total No. of Pages : 03
Total No. of Questions : 09	
M.Sc. (Mathematics MATHEMATICAL Subject Code : M3 M.Code : 92	s). (Sem.–1) METHODS SM-105-22 2800
Date of Examination : 23-01-23	
Time : 3 Hrs.	Max. Marks:60
INSTRUCTIONS TO CANDIDATES : 1. SECTION-A is COMPULSORY consisting of	of TEN questions carrying TWO marks
each. 2. SECTION - B & C, have FOUR questions each	ach.
3. Attempt any FIVE questions from SECTIO	N B & C carrying EIGHT marks each.
4. Select atleast TWO questions from SECTION	ON - B & C.
SECTION- l. Write short notes on :	A

- a) Define Laplace transform.
- b) Find the Laplace transform of sin at.
- c) What are sufficient conditions for existence of Laplace transform of a function?
- d) Define Fourier transform.
- e) What are applications of Fourier transform?
- f) State convolution theorem of Fourier transform.
- g) Give examples of Fredholm and Volterra integral equations.
- h) Give two names of methods for solving integral equations.
- i) Give an example of an integral equation with separable kernel.
- j) Define symmetric kernel of an integral equation. Also give an example.

1 M-92800

(S1)-2763

Download all NOTES and PAPERS at StudentSuvidha.com

SECTION-B

- 2. a) State and prove linearity property of Laplace transform.
 - b) Find the Laplace transform of (i) $\cos^2 2t$ (ii) $\sin^3 2t$.
- 3. a) Solve the following equation using Laplace transform

$$y'' - 2y' + y = e'$$
 with $y(0) = 2, y'(0) = -1$.

- b) Find the inverse Laplace transform of $\frac{s+2}{s^2-4s+13}$.
- 4. Find the Fourier transform of $f(x) = \begin{cases} 1-x^2, & |x| \le 1 \\ 0, & |x| > 1 \end{cases}$ and hence evaluate $\int_0^\infty \frac{x \cos x \sin x}{x^3} \cos \frac{x}{2} dx.$
- 5. Solve the following equation using Fourier sine transform $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ subject to the following conditions. a) u = 0 when x = 0 when x = 0 when t = 0b) $u = \begin{cases} 1, 0 \\ 0, x \le 1 \end{cases}$ when t = 0

c)
$$u(x, t)$$
 is bounded.

SECTION-C

- 6. a) Convert the differential equation y''(x) 2xy'(x) 3y(x) = 0, y(0) = 1, y'(0) = 0 into an integral equation.
 - b) Show that y(x) = 2 x is a solution of the integral equation $\int_0^x e^{x-t} y(t) dt = e^x + x 1$.

2 | M-92800

(S1)-2763

Download all NOTES and PAPERS at StudentSuvidha.com

- 7. Using the method of successive approximations, solve the following integral equation $y(x) = 1 + \lambda \int_0^1 xt y(t) dt$.
- 8. Find the eigenvalues and eigenfunctions of the following homogeneous integral equation with degenerate kernel $y(x) = \lambda \int_0^1 (3x 2)t y(t) dt$.
- 9. Using Fredholm determinant, find the resolvent kernel of the integral equation $y(x) = f(x) + \lambda \int_0^1 x e^t y(t) dt$, $(\lambda \neq 1)$ and hence solve it.

NOTE : Disclosure of Identity by writing Mobile No. or Marking of passing request on any paper of Answer Sheet will lead to UMC against the Student.

3 | M-92800

(S1)-2763

Download all NOTES and PAPERS at StudentSuvidha.com